Downey PA, Siegel MI. Bone biology and the clinical implications for osteoporosis [Internet]. Vol. 86, Physical Therapy. 2006. Available from: https://academic.oup.com/ptj/article/86/1/77/2805118
DOI: 10.1093/ptj/86.1.77
Datta HK, Ng WF, Walker JA, Tuck SP, Varanasi SS. The cell biology of bone metabolism. Vol. 61, Journal of Clinical Pathology. 2008. p. 577–87.
DOI: 10.1136/jcp.2007.048868
Bonewald LF. The amazing osteocyte. Journal of Bone and Mineral Research. 2011 Feb;26(2):229–38.
DOI: 10.1002/jbmr.320
Zhang W, Gao R, Rong X, Zhu S, Cui Y, Liu H, et al. Immunoporosis: Role of immune system in the pathophysiology of different types of osteoporosis. Vol. 13, Frontiers in Endocrinology. Frontiers Media S.A.; 2022.
DOI: 10.3389/fendo.2022.965258
Schlundt C, El Khassawna T, Serra A, Dienelt A, Wendler S, Schell H, et al. Macrophages in bone fracture healing: Their essential role in endochondral ossification. Bone. 2018 Jan 1;106:78–89.
DOI: 10.1016/j.bone.2015.10.019
Wang C, Ma C, Gong L, Guo Y, Fu K, Zhang Y, et al. Macrophage Polarization and Its Role in Liver Disease. Vol. 12, Frontiers in Immunology. Frontiers Media S.A.; 2021.
DOI: 10.3389/fimmu.2021.803037
Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Vol. 8, Nature Reviews Immunology. 2008. p. 958–69.
DOI: 10.1038/nri2448
Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Vol. 25, Trends in Immunology. 2004. p. 677–86.
DOI: 10.1016/j.it.2004.09.015
Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, et al. Macrophage plasticity, polarization, and function in health and disease. Vol. 233, Journal of Cellular Physiology. Wiley-Liss Inc.; 2018. p. 6425–40.
DOI: 10.1002/jcp.26429
Boyce BF, Hughes DE, Wright KR, Xing L, Dai A. Recent advances in bone biology provide insight into the pathogenesis of bone diseases. Vol. 79, Laboratory Investigation. 1999.
Crockett JC, Mellis DJ, Scott DI, Helfrich MH. New knowledge on critical osteoclast formation and activation pathways from study of rare genetic diseases of osteoclasts: Focus on the RANK/RANKL axis. Vol. 22, Osteoporosis International. 2011.
DOI: 10.1007/s00198-010-1272-8
Matsumoto M, Kogawa M, Wada S, Takayanagi H, Tsujimoto M, Katayama S, et al. Essential role of p38 mitogen-activated protein kinase in cathepsin K gene expression during osteoclastogenesis through association of NFATc1 and PU.1. Journal of Biological Chemistry. 2004;279(44).
DOI: 10.1074/jbc.M408795200
Ardura JA, Rackov G, Izquierdo E, Alonso V, Gortazar AR, Escribese MM. Targeting macrophages: Friends or foes in disease? Vol. 10, Frontiers in Pharmacology. 2019.
DOI: 10.3389/fphar.2019.01255
Philbrick WM, Wysolmerski JJ, Galbraith S, Holt E, Orloff JJ, Yang KH, et al. Defining the Roles of Parathyroid Hormone-Related Protein in Normal Physiology [Internet]. Vol. 76, PHYSIOLOGICAL REVIEWS. 1996. Available from: www.physiology.org/journal/physrev
DOI: 10.1152/physrev.1996.76.1.127
Fiaschi-Taesch NM, Stewart AF. Minireview: Parathyroid hormone-related protein as an intracrine factor - Trafficking mechanisms and functional consequences. Vol. 144, Endocrinology. 2003. p. 407–11.
DOI: 10.1210/en.2002-220818
Li JY, D’Amelio P, Robinson J, Walker LD, Vaccaro C, Luo T, et al. IL-17A Is Increased in Humans with Primary Hyperparathyroidism and Mediates PTH-Induced Bone Loss in Mice. Cell Metab. 2015 Nov 3;22(5):799–810.
DOI: 10.1016/j.cmet.2015.09.012
Chen T, Wang Y, Hao Z, Hu Y, Li J. Parathyroid hormone and its related peptides in bone metabolism. Vol. 192, Biochemical Pharmacology. Elsevier Inc.; 2021.
DOI: 10.1016/j.bcp.2021.114669
Rámila D, Ardura JA, Esteban V, Ortega A, Ruiz-Ortega M, Bosch RJ, et al. Parathyroid hormone-related protein promotes inflammation in the kidney with an obstructed ureter. Kidney Int. 2008;73(7):835–47.
DOI: 10.1038/sj.ki.5002775
Dempster DW, Hughes-Begos CE, Plavetic-Chee K, Brandao-Burch A, Cosman F, Nieves J, et al. Normal human osteoclasts formed from peripheral blood monocytes express PTH type 1 receptors and are stimulated by PTH in the absence of osteoblasts. J Cell Biochem. 2005 May 1;95(1):139–48.
DOI: 10.1002/jcb.20388
Gay C V., Zheng B, Gilman VR. Co-detection of PTH/PTHrP receptor and tartrate resistant acid phosphatase in osteoclasts. J Cell Biochem. 2003 Aug 1;89(5):902–8.
DOI: 10.1002/jcb.10579
Schlundt C, Fischer H, Bucher CH, Rendenbach C, Duda GN, Schmidt-Bleek K. The multifaceted roles of macrophages in bone regeneration: A story of polarization, activation and time. Vol. 133, Acta Biomaterialia. Acta Materialia Inc; 2021. p. 46–57.
DOI: 10.1016/j.actbio.2021.04.052
Chang MK, Raggatt LJ, Alexander KA, Kuliwaba JS, Fazzalari NL, Schroder K, et al. Osteal Tissue Macrophages Are Intercalated throughout Human and Mouse Bone Lining Tissues and Regulate Osteoblast Function In Vitro and In Vivo. The Journal of Immunology. 2008 Jul 15;181(2):1232–44.
DOI: 10.4049/jimmunol.181.2.1232
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25(4):402–8.
DOI: 10.1006/meth.2001.1262
Maycas M, Ardura JA, De Castro LF, Bravo B, Gortázar AR, Esbrit P. Role of the Parathyroid Hormone Type 1 Receptor (PTH1R) as a Mechanosensor in Osteocyte Survival. Journal of Bone and Mineral Research. 2015 Jul 1;30(7):1231–44.
DOI: 10.1002/jbmr.2439
Pacifici R. Role of T cells in the modulation of PTH action: Physiological and clinical significance. Vol. 44, Endocrine. 2013.
DOI: 10.1007/s12020-013-9960-8
Jiao HW, Jia XX, Zhao TJ, Rong H, Zhang JN, Cheng Y, et al. Up-regulation of TDAG51 is a dependent factor of LPS-induced RAW264.7 macrophages proliferation and cell cycle progression. Immunopharmacol Immunotoxicol. 2016;38(2).
DOI: 10.3109/08923973.2016.1138968
Reinhart R, Kaufmann T. IL-4 enhances survival of in vitro-differentiated mouse basophils through transcription-independent signaling downstream of PI3K article. Cell Death Dis. 2018;9(7).
DOI: 10.1038/s41419-018-0754-z
Yu M, Moreno JL, Stains JP, Keegan AD. Complex regulation of tartrate-resistant acid phosphatase (TRAP) expression by interleukin 4 (IL-4): IL-4 indirectly suppresses receptor activator of NF-κB ligand (RANKL)-mediated TRAP expression but modestly induces its expression directly. Journal of Biological Chemistry. 2009 Nov 20;284(47):32968–79.
DOI: 10.1074/jbc.M109.001016
Sun HH, Wang HM, Gao CH, Tai L, Yang YY, Dong HL, et al. F4/80+CD206+ M2-like macrophages contribute to bone erosion in collagen-induced arthritis by differentiating into osteoclasts. Eur J Inflamm. 2023 Jan 1;21.
DOI: 10.1177/1721727X231194595
Horibe K, Hara M, Nakamura H. M2-like macrophage infiltration and transforming growth factor-β secretion during socket healing process in mice. Arch Oral Biol. 2021 Mar 1;123.
DOI: 10.1016/j.archoralbio.2021.105042
Nie Z, Hu Z, Guo X, Xiao Y, Liu X, de Bruijn JD, et al. Genesis of osteoclasts on calcium phosphate ceramics and their role in material-induced bone formation. Acta Biomater. 2023 Feb 1;157:625–38.
DOI: 10.1016/j.actbio.2022.11.005
Zha L, He L, Liang Y, Qin H, Yu B, Chang L, et al. TNF-α contributes to postmenopausal osteoporosis by synergistically promoting RANKL-induced osteoclast formation. Biomedicine and Pharmacotherapy. 2018;102.
DOI: 10.1016/j.biopha.2018.03.080
Hu K, Shang Z, Yang X, Zhang Y, Cao L. Macrophage Polarization and the Regulation of Bone Immunity in Bone Homeostasis. Vol. 16, Journal of Inflammation Research. 2023.
DOI: 10.2147/JIR.S423819