Revista de Osteoporosis y Metabolismo Mineral

Journal Metrics:
Citescore: 0,14 | SCImago Journal Rank : 0,12 | Google Scholar: 0,0172

Empresas Colaboradoras:

The Journal follows the Uniform Requirements standards Manuscripts Submitted to Biomedical for Journals www.icmje.org

The Journal embraces the principles and procedures dictated by the Committee on Publication Ethics (COPE) www.publicationethics.org

Category: Editorial

Osteonecrosis of the jaw: lights and shadows in the knowledge of its pathophysiology

Osteonecrosis of the jaw (ONJ) was described by Marx et al.[1] in 2005. In the following years, both isolated cases and series of patients were published which, over the years, was decreasing, on the one hand, due to the saturation of the journals and the low interest that the description of new cases may cause. Furthermore, knowledge of this disease has lead to the development of preventive measures that may have diminished its incidence.
Regarding ONJ, a whole range of “fears, risks and dangers” have been developed that are largely unjustified. ONJ was indicated as a complication of prolonged bisphosphonate treatment and in this sense it was equalized to the diaphyseal fractures[2], when both processes most certainly have different etiopathogenic mechanisms[3]. Fears concerning ONJ or diaphyseal fractures developed a whole doctrine about the need to suspend treatment with bisphosphonates or denosumab, the so-called “therapeutic vacations” that in reality what it was about was simply to suspend the antiresorptive treatment, before that the possible complications of its use appear[4-6]. This is especially common in the field of dentists, who, in many cases, concerned about the possible development of an ONJ do not perform virtually any dental intervention in patients receiving bisphosphonates or denosumab. With this, what has been observed is an increase in the abandonment of treatment with antiresorptive drugs which produces an increased risk of fragility fractures after discontinuation of bisphosphonate therapy, a risk that has an extreme severity in the case of suspension of denosumab treatment, with the appearance of multiple vertebral fractures[7-11].

Read More

Vitamin D and muscle function

In 1922, at Johns Hopkins University in Baltimore, Professor McCollum discovered a factor, which has since been referred to as vitamin D, following the alphabetical order of the other vitamins identified up to that time. It is capable of curing rickets in children and osteomalacia in adults. Diseases in which, as we know from the first scientific descriptions published in London in the mid-seventeenth century, muscle involvement consisting of weakness and generalized hypotonia is associated with bone involvement, its main characteristic. Therefore, since the discovery of vitamin D, it has been associated not only with bone health but also with muscle health [1]. Paradoxically, at present, there is no consensus on the potential beneficial effects of vitamin D supplementation on muscle function, balance and risk of falls, a situation highlighted in the last meta-analysis published by Bolland et al. [2], who review in 81 randomized clinical trials (RCTs) that include 53,537 participants the effect of vitamin D on fractures and falls as a primary outcome. The pooled analyses showed that vitamin D supplementation had no effect on falls (37 RCTs, n=34,144, RR=0.97, 95% confidence interval -0.93 to 1.02), what the authors concluded that “vitamin D supplementation does not exert significant effects in falls”, affirming that “potential future trials will probably not alter those conclusions, and that, therefore, there is little justification for the use of vitamin D supplements.

Read More

Atypical femoral fractures: a rare complication possibly due to the accumulation of rare genetic variants

Antiresorptive drugs, such as bisphosphonates and denosumab, are very effective in reducing the risk of vertebral and non-vertebral fractures in patients with osteoporosis. They can be administered conveniently, are generally well tolerated and the side effects are mild and infrequent. Occasionally, however, some patients may present complications peculiar to the treatment, such as atypical femoral fractures (FFA) and maxillary osteonecrosis. These complications occur very rarely, but are potentially serious and difficult to manage, so they are a source of concern for some doctors and many patients. This fear seems to have a negative influence, although not justified, on therapeutic compliance. Therefore, it would be extremely useful to identify the rare patients who are at risk of developing these complications.

Read More

Bone pathology of Gaucher disease

Gaucher disease (GD) is a congenital fault of the metabolism due to a deficiency in the lysosomal enzyme glucocerebrosidase, also called acid beta glucosidase. This enzyme deficit results in the accumulation of non-metabolised substrate in the lysosomes of various cell lines of the monocyte-macrophage system. The deposit of non-degraded material, a glucocerebroside called glucosylceramide, is an intermediate metabolite in the synthesis and breakdown of glucosphingolipids. These macrophages laden with lipids, called “Gaucher cells” , are involved in the pathogeny of the disease1. GD is a sphingolipidosis, which constitutes the most frequent liposomal deposition disease. GD is a multiethnic disorder which is inherited in a recessive autosomic way1. The Gaucher Registry is the largest co-operative observational register in the world. Up to January 2007, 4,585 patients from 56 countries had been registered (www.gaucherregistry.com). It is estimated that there are currently around 300 diagnosed cases in Spain, although it is calculated that there are many more. In the majority of case, the molecular basis of the disease is made up of mutations in the gene GBA (Glucocerebrosidase beta acid) located in chromosome 1 (1q21) which codes for glucocerebrosidase. GD has three clinical forms, and in all of these there is bone, bone medullar and visceral affectation. The Neuronopathic Gaucher Disease Task Force of the European Working Group on Gaucher Disease classifies the disease as: type 1, or non-neuropathic; type 2, or acute neuropathic; and type 3, or chronic neuropathic2. Type 1 GD is the most common, making up 94% of all cases. Type 2 GD is the form called infantile cerebral. Type 3 GD is very rare and is only seen in the Norrbottnian region in the north of Sweden. For this reason we are always here refering to type 1 GD. GD, as with other rare diseases is characterised by being multisystemic. Notable among its multiple clinical manifestations are osteopenia, bone pain, bone fractures, anaemia, thrombopenia, haemorrhages, delayed growth, hepatomegaly, splenomegaly and changes in liver function tests. The prognosis of GD depends on the degree of affectation of these clinical manifestations. GD is a disease which starts in infancy but which is not usually diagnosed until the age of 16 years2. Even in those patients diagnosed as adults, the signs and symptoms begin in infancy3. This is why each patient is different in terms their age of presentation, symptomology, diagnosis and progression of the disease. Although there is a fulminant presentation form in infancy, the disease may be asymptomatic and diagnosed by chance in adults, in whom it usually takes an insidious and progressive course. Despite being treated as a hereditary disease, the diagnosis of type 1 GD is carried out in 74% of cases at an adult age. And 10% of cases of GD are even diagnosed at over 50 years of age. If it is not brought to mind, it is almost impossible to diagnose. It initially presents as a combination of symptoms such as bone pain, haematomas and asthenia. For this reason it is usually wrongly labelled as a non-specific viral infection, “growing pains”, a crisis of acute bone pain with local inflammation and/or fever with necrosis in the hip categorised as Perthes disease, accidental fractures, recurrent epistaxis due to non-specific alterations in coagulation and splenomegaly.

Read More

The paradox of vitamin D deficiency in sunny regions, in young people or in osteoporotic patients treated with vitamin D, could be explained by common genetic variations. Have we found the Rosetta Stone of this apparent contradiction?

The “epidemics” of rickets which devastated humanity appeared to have ended with the discovery of vitamin D at the start of the last century. However, severe and prolonged deficiency of vitamin D, with clinical manifestations of rickets and osteomalacia is rising again, above all in ethnic minorities, in Western countries1.
At present, vitamin D deficiency constitutes a pandemic which affects more than half the population of the whole world2, and is a significant factor in age-related loss of bone and muscle mass , falls and fractures2,3.
In addition, in developed societies, vitamin D deficiency is associated with a higher risk of degenerative and chronic diseases, such as autoimmune diseases: diabetes mellitus, multiple schlerosis; cancer: colon and breast; infectious diseases, such as tuberculosis and seasonal flu; cardiovascular diseases, cardiac insufficiency, hypertension, and acute myocardial infarction, and even a higher risk of cardiovascular death, or death by any other cause2,3. Although, the great majority of the studies are associative and not interventional, the biological plausability generated by knowledge of non-hormonal actions, intracrines and paracrines of the endocrine system of vitamin D, give consistency to the potential problem which, for the public health system, a deficiency or insufficiency of vitamin D may constitute3.
“Vitamin D” in circulation is made up of vitamin D3 and D2, the first mainly acquired by subcutaneous formation by ultraviolet B radiation, and in smaller qualities by ingesting the few natural dietary sources which contain it, as well as fortified foods or supplements, the second solely from these last two sources4. Once acquired, the vitamin D, and later its metabolites, are transported by means of a vitamin D transporter protein, also known as “gc-globulin (group-specific component)”, which also participates in transport within cells2,3.
In the liver, by the action of, above all, the microsomal enzyme CYP2R1, the “vitamin D” is converted in to 25 hydroxyvitamin D (calcifediol), the most stable and abundant metabolite, biomarker for the status of the organism of vitamin D2,3.

Read More

Paget’s disease of bone

On 14th November 1877, the British doctor James Paget presented to the Medical and Surgical Society of London five cases of a condition which was called “Osteitis Deformans”, a slowly developing bone disease characterised by the lengthening, softening and deformation of the bones, above all affecting the cranial bones and the long bones of the lower limbs. He published the first report in Medical-Surgical Transactions in 1877, in which he described in detail a man he had treated over a period of 20 years 1. He subsequently published, more cases in 1882 as well as saying that he had not known that Czerney had used the term “Osteitis Deformans” in 1873.

Read More

Vitamin D deficiency: are we identifying it properly?

Subclinical deficiency of vitamin D or vitamin D deficiency is prevalent throughout the world, and there is great variability depending on the geographic region, genetic factors and lifestyle considerations.
Moreover, researchers now believe that serum 25-hydroxyvitamin D (25OHD) levels are the best indicator of vitamin D, although there are methodological issues that limit comparability between studies and how to establish deficiency cutoffs.
There are several criteria to establish the optimal level of 25OHD, which include the degree of maximal suppression of PTH, the intestinal absorption of mediated calcium 1,25(OH)2 vitamin D or reduction of fractures. Regarding the former, several studies have analyzed 25OHD concentration required for maximum suppression of PTH and offer variable results. This has led some researchers and scientific entities to recommend 25OHD levels above 20 ng/ml (Institute of Medicine, IOM) while others advise over 30 ng/ml (Endocrine Society, International Osteoporosis Foundation). The application variable for these recommendations has generated considerable confusion in clinical practice.

Read More

Gastric protection or bone protection? The dilemma of proton-pump inhibitor

The arrival of H2 inhibitors and later the proton-pump inhibitor (PPI) changed the clinical course of gastroesophageal disease, greatly reducing the rate of peptic ulcers and their complications. At present they are used in a high proportion of patients with diverse clinical situations 1. They are recommended to treat gastro-esophageal reflux, Helicobacter pylori, Zollinger-Ellison syndrome, duodenal ulcer, gastric ulcer and NSAID-induced peptic ulcer. Their proven benefits in preventing ulcers and encouraging good tolerance have led them to be considered as a popular, safe “gastric protector“, with little adverse effects and used in many situations without indication.
But do not forget that the blockade of acid secretion by PPIs is the cause of some undesirable effects 2. Increased intestinal and systemic infections have been attributed to decreased gastric acid secretion and their bactericidal capacity. Other infections, such as pneumonia, are also more common among patients treated with PPIs. B12 production capacity and intestinal absorption may be reduced by malabsorption. A reduced of antiplatelet effect of clopidogrel therapy has also been described. Some cancers, especially colon cancer, could be more frequent. Finally, it is worth noting the increased risk of fracture in patients treated with long-term PPI. In this issue, a study by Vera Rodríguez et al. 3 on its possible association with increased fractures in the population of the Canary Islands is presented, confirming the increase in non-traumatic fractures in patients over 50 years undergoing long-term PPI treatment compared to those who have never taken these medications.

Read More

Trabecular bone score and surgical treatment of primary hyperparathyroidism

The surgical management of patients with primary hyperparathyroidism (HP) has resulted in several advances in recent decades which have improved the surgical management of this pathology, notable among which are the techniques of preoperative localisation, the use of minimally invasive techniques and the intraoperative determination of PTH. In spite of these advances, a number of controversies persist in terms of the surgical indications for patients with HP 1.

Read More
Loading

Buscador

Generic selectors
Solo mostrar coincidencias exactas
Buscar en títulos
Buscar en cuerpo de texto
Buscar en artículos
Buscar en secciones de
Filtrar por categorías
11
120181004-en
120191101-en
120191102-en
Clinical Notes
Committees
Editorial
English
Index of Authors
Index of Communications
Letter to the Director
Oral Communications
Original Articles
Osteology images
Poster Communications
Presentation
Reviews
SIBOMM News
Special Article
Special Documents

Search

Generic selectors
Solo mostrar coincidencias exactas
Buscar en títulos
Buscar en cuerpo de texto
Buscar en artículos
Buscar en secciones de
Filtrar por categorías
11
120181004-en
120191101-en
120191102-en
Clinical Notes
Committees
Editorial
English
Index of Authors
Index of Communications
Letter to the Director
Oral Communications
Original Articles
Osteology images
Poster Communications
Presentation
Reviews
SIBOMM News
Special Article
Special Documents

Language

Search