Dudaric L, Dumic-Cule I, Divjak E, Cengic T, Brkljacic B, Ivanac G. Bone Remodeling in Osteoarthritis-Biological and Radiological Aspects. Medicina (Kaunas). 2023;59(9):1613.
DOI: 10.3390/medicina59091613
Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J. 2001;10(Suppl 2):S96-101.
DOI: 10.1007/s005860100282
Khan WS, Rayan F, Dhinsa BS, Marsh D. An osteoconductive, osteoinductive, and osteogenic tissue-engineered product for trauma and orthopaedic surgery: how far are we? Stem Cells Int. 2012;2012:236231.
DOI: 10.1155/2012/236231
Stewart HL, Kawcak CE. The Importance of Subchondral Bone in the Pathophysiology of Osteoarthritis. Front Vet Sci. 2018 Aug 28;5:178.
DOI: 10.3389/fvets.2018.00178
Zhu X, Chan YT, Yung PSH, Tuan RS, Jiang Y. Subchondral Bone Remodeling: A Therapeutic Target for Osteoarthritis. Front Cell Dev Biol. 2021;8:607764.
DOI: 10.3389/fcell.2020.607764
Hu W, Chen Y, Dou C, Dong S. Microenvironment in subchondral bone: predominant regulator for the treatment of osteoarthritis. Ann Rheum Dis. 2021;80(4):413-422.
DOI: 10.1136/annrheumdis-2020-218089
Wang W, Ye R, Xie W, Zhang Y, An S, Li Y, Zhou Y. Roles of the calcified cartilage layer and its tissue engineering reconstruction in osteoarthritis treatment. Front Bioeng Biotechnol. 2022;10:911281.
DOI: 10.3389/fbioe.2022.911281
Bolamperti S, Villa I, Rubinacci A. Bone remodeling: an operational process ensuring survival and bone mechanical competence. Bone Res. 2022;10(1):48.
DOI: 10.1038/s41413-022-00219-8
Zhu X, Chan YT, Yung PSH, Tuan RS, Jiang Y. Subchondral Bone Remodeling: A Therapeutic Target for Osteoarthritis. Front Cell Dev Biol. 2021;8:607764.
DOI: 10.3389/fcell.2020.607764
Caldo D, Massarini E, Rucci M, Deaglio S, Ferracini R. Epigenetics in Knee Osteoarthritis: A 2020-2023 Update Systematic Review. Life (Basel). 2024 Feb 17;14(2):269.
DOI: 10.3390/life14020269
Guo JU, Agarwal V, Guo H, Bartel DP. Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 2014 Jul 29;15(7):409.
DOI: 10.1186/s13059-014-0409-z
Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013 Mar 21;495(7441):333-8.
DOI: 10.1038/nature11928
Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, Zhu P, Chang Z, Wu Q, Zhao Y, Jia Y, Xu P, Liu H, Shan G. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 2015 Mar;22(3):256-64.
DOI: 10.1038/nsmb.2959
Bosson AD, Zamudio JR, Sharp PA. Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. Mol Cell. 2014 Nov 6;56(3):347-359.
DOI: 10.1016/j.molcel.2014.09.018
Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL, Yang L. Complementary sequence-mediated exon circularization. Cell. 2014;159(1):134-147.
DOI: 10.1016/j.cell.2014.09.001
Zhang Y, Liu L, Liu K, Wang M, Su X, Wang J. Regulatory mechanism of circular RNA involvement in osteoarthritis. Front Surg. 2023;9:1049513.
DOI: 10.3389/fsurg.2022.1049513
Busa VF, Leung AKL. Thrown for a (stem) loop: How RNA structure impacts circular RNA regulation and function. Methods. 2021;196:56-67.
DOI: 10.1016/j.ymeth.2021.02.019
Liang D, Tatomer DC, Luo Z, Wu H, Yang L, Chen LL, Cherry S, Wilusz JE. The Output of Protein-Coding Genes Shifts to Circular RNAs When the Pre-mRNA Processing Machinery Is Limiting. Mol Cell. 2017;68(5):940-954.e3.
DOI: 10.1016/j.molcel.2017.10.034
Kramer MC, Liang D, Tatomer DC, Gold B, March ZM, Cherry S, Wilusz JE. Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes Dev. 2015;29(20):2168-82.
DOI: 10.1101/gad.270421.115
Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA, Goodall GJ. The RNA binding protein quaking regulates formation of circRNAs. Cell. 2015;160(6):1125-34.
DOI: 10.1016/j.cell.2015.02.014
Errichelli L, Dini Modigliani S, Laneve P, Colantoni A, Legnini I, Capauto D, Rosa A, De Santis R, Scarfò R, Peruzzi G, Lu L, Caffarelli E, Shneider NA, Morlando M, Bozzoni I. FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Nat Commun. 2017;8:14741.
DOI: 10.1038/ncomms14741
Koh HR, Xing L, Kleiman L, Myong S. Repetitive RNA unwinding by RNA helicase A facilitates RNA annealing. Nucleic Acids Res. 2014;42(13):8556-64.
DOI: 10.1093/nar/gku523
Aktaş T, Avşar Ilık İ, Maticzka D, Bhardwaj V, Pessoa Rodrigues C, Mittler G, Manke T, Backofen R, Akhtar A. DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome. Nature. 2017;544(7648):115-119.
DOI: 10.1038/nature21715
Li X, Liu CX, Xue W, Zhang Y, Jiang S, Yin QF, Wei J, Yao RW, Yang L, Chen LL. Coordinated circRNA Biogenesis and Function with NF90/NF110 in Viral Infection. Mol Cell. 2017;67(2):214-227.e7.
DOI: 10.1016/j.molcel.2017.05.023
Ferreira HJ, Davalos V, de Moura MC, Soler M, Perez-Salvia M, Bueno-Costa A, Setien F, Moran S, Villanueva A, Esteller M. Circular RNA CpG island hypermethylation-associated silencing in human cancer. Oncotarget. 2018;9(49):29208-29219.
DOI: 10.18632/oncotarget.25673
Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, Oberdoerffer P, Sandberg R, Oberdoerffer S. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature. 2011;479(7371):74-9.
DOI: 10.1038/nature10442
Kristensen LS, Okholm TLH, Venø MT, Kjems J. Circular RNAs are abundantly expressed and upregulated during human epidermal stem cell differentiation. RNA Biol. 2018;15(2):280-291.
DOI: 10.1080/15476286.2017.1409931
He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L, Sun Y, Li X, Dai Q, Song CX, Zhang K, He C, Xu GL. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 2011;333(6047):1303-7.
DOI: 10.1126/science.1210944
Zhang Y, Xue W, Li X, Zhang J, Chen S, Zhang JL, Yang L, Chen LL. The Biogenesis of Nascent Circular RNAs. Cell Rep. 2016 Apr 19;15(3):611-624.
DOI: 10.1016/j.celrep.2016.03.058
Xiao J, Joseph S, Xia M, Teng F, Chen X, Huang R, Zhai L, Deng W. Circular RNAs Acting as miRNAs' Sponges and Their Roles in Stem Cells. J Clin Med. 2022;11(10):2909.
DOI: 10.3390/jcm11102909
Zhou X, Li J, Zhou Y, Yang Z, Yang H, Li D, Zhang J, Zhang Y, Xu N, Huang Y, Jiang L. Down-regulated ciRS-7/up-regulated miR-7 axis aggravated cartilage degradation and autophagy defection by PI3K/AKT/mTOR activation mediated by IL-17A in osteoarthritis. Aging (Albany NY). 2020 Oct 25;12(20):20163-20183.
DOI: 10.18632/aging.103731
Xue JF, Shi ZM, Zou J, Li XL. Inhibition of PI3K/AKT/mTOR signaling pathway promotes autophagy of articular chondrocytes and attenuates inflammatory response in rats with osteoarthritis. Biomed Pharmacother. 2017;89:1252-1261.
DOI: 10.1016/j.biopha.2017.01.130
Rybak-Wolf A, Stottmeister C, Glažar P, Jens M, Pino N, Giusti S, Hanan M, Behm M, Bartok O, Ashwal-Fluss R, Herzog M, Schreyer L, Papavasileiou P, Ivanov A, Öhman M, Refojo D, Kadener S, Rajewsky N. Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed. Mol Cell. 2015;58(5):870-85.
DOI: 10.1016/j.molcel.2015.03.027
Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L, Chen LL. Circular intronic long noncoding RNAs. Mol Cell. 2013 Sep 26;51(6):792-806.
DOI: 10.1016/j.molcel.2013.08.017
Shao T, Pan YH, Xiong XD. Circular RNA: an important player with multiple facets to regulate its parental gene expression. Mol Ther Nucleic Acids. 2020 Nov 17;23:369-376.
DOI: 10.1016/j.omtn.2020.11.008
Zhang MX, Wang JL, Mo CQ, Mao XP, Feng ZH, Li JY, Lin HS, Song HD, Xu QH, Wang YH, Lu J, Wei JH, Han H, Chen W, Mao HP, Luo JH, Chen ZH. CircME1 promotes aerobic glycolysis and sunitinib resistance of clear cell renal cell carcinoma through cis-regulation of ME1. Oncogene. 2022;41(33):3979-3990.
DOI: 10.1038/s41388-022-02386-8
Ho-Xuan H, Glažar P, Latini C, Heizler K, Haase J, Hett R, Anders M, Weichmann F, Bruckmann A, Van den Berg D, Hüttelmaier S, Rajewsky N, Hackl C, Meister G. Comprehensive analysis of translation from overexpressed circular RNAs reveals pervasive translation from linear transcripts. Nucleic Acids Res. 2020;48(18):10368-10382.
DOI: 10.1093/nar/gkaa704
Ye F, Gao G, Zou Y, Zheng S, Zhang L, Ou X, Xie X, Tang H. circFBXW7 Inhibits Malignant Progression by Sponging miR-197-3p and Encoding a 185-aa Protein in Triple-Negative Breast Cancer. Mol Ther Nucleic Acids. 2019;18:88-98.
DOI: 10.1016/j.omtn.2019.07.023
Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen LL, Wang Y, Wong CC, Xiao X, Wang Z. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 2017;27(5):626-641.
DOI: 10.1038/cr.2017.31
Nedunchezhiyan U, Varughese I, Sun AR, Wu X, Crawford R, Prasadam I. Obesity, Inflammation, and Immune System in Osteoarthritis. Front Immunol. 2022;13:907750.
DOI: 10.3389/fimmu.2022.907750
Tang S, Nie X, Ruan J, Cao Y, Kang J, Ding C. El RNA circular circNFKB1 promueve la progresión de la osteoartritis mediante la interacción con la ENO1 y el mantenimiento de la señalización NF--B. Celta Muerte Dis. 2022;13(8):695.
Zhang Y, Lu R, Huang X, Yin E, Yang Y, Yi C, You H, Song X, Yuan X. Circular RNA MELK Promotes Chondrocyte Apoptosis and Inhibits Autophagy in Osteoarthritis by Regulating MYD88/NF-κB Signaling Axis through MicroRNA-497-5p. Contrast Media Mol Imaging. 2022;2022:7614497.
DOI: 10.1155/2022/7614497
Cheng S, Nie Z, Cao J, Peng H. Circ_0136474 promotes the progression of osteoarthritis by sponging mir-140-3p and upregulating MECP2. J Mol Histol. 2023;54(1):1-12.
DOI: 10.1007/s10735-022-10100-x
Jiao F, Gong Z. The Beneficial Roles of SIRT1 in Neuroinflammation-Related Diseases. Oxid Med Cell Longev. 2020;2020:6782872.
DOI: 10.1155/2020/6782872
Qian L, Yu B, Chen T, Chen K, Ma Z, Wang Y, Sun B. El apotosis inducido por IL-1o, inflamación y degeneración de matriz extracelular en el modelo de celda de osteoartritis por miR-3619-5p/SIRT1. Int Immunopharmacol. 2022;112:109289.
DOI: 10.1016/j.intimp.2022.109289
Huang Z, Ma W, Xiao J, Dai X, Ling W. CircRNA_0092516 regulates chondrocyte proliferation and apoptosis in osteoarthritis through the miR-337-3p/PTEN axis. J Biochem. 2021;169(4):467-475.
DOI: 10.1093/jb/mvaa119
Li G, Luo H, Ding Z, Liang H, Lai Z, Chen S, Huang Y. Silencing of circ_0000205 mitigates interleukin-1β-induced apoptosis and extracellular matrix degradation in chondrocytes via targeting miR-766-3p/ADAMTS5 axis. Innate Immun. 2022;28(2):79-90.
DOI: 10.1177/17534259221077078
Que W, Liu H, Yang Q. CircPRKCH modulates extracellular matrix formation and metabolism by regulating the miR-145/HGF axis in osteoarthritis. Arthritis Res Ther. 2022;24(1):216.
DOI: 10.1186/s13075-022-02893-9
He M, Jia Z, Wen Y, Chen X. Circ_0043947 contributes to interleukin 1β-induced injury in chondrocytes by sponging miR-671-5p to up-regulate RTN3 expression in osteoarthritis pathology. J Orthop Surg Res. 2022;17(1):177.
DOI: 10.1186/s13018-022-02970-4
Wahafu P, Xu A, Zhao B, Tuo Y, Yang J. Circ_0005526 contributes to interleukin-1β-induced chondrocyte injury in osteoarthritis via upregulating transcription factor 4 by interacting with miR-142-5p. Bioengineered. 2022;13(4):8407-8418.
DOI: 10.1080/21655979.2022.2048773
Ouyang X, Ding Y, Yu L, Xin F, Yang X, Liu X, Tong S. Circ_SPG11 plays contributing effects on IL-1β-induced chondrocyte apoptosis and ECM degradation via miR-665 inhibition-mediated GREM1 upregulation. Clin Immunol. 2021;233:108889.
DOI: 10.1016/j.clim.2021.108889
Ou L, Huang W, Zhang T, Xu D, Kong D, Meng Y. Circular RNA circ_0114876 regulates osteoarthritis through upregulating ADAM10 via targeting miR-1227-3p. Transpl Immunol. 2023;77:101747.
DOI: 10.1016/j.trim.2022.101747
Xie W, Jiang L, Huang X, You W, Sun W. Hsa_circ_0004662 Accelerates the Progression of Osteoarthritis via the microRNA-424-5p/VEGFA Axis. Curr Mol Med. 2024;24(2):217-225.
DOI: 10.2174/1566524023666221103161203
Lai X, Song Y, Tian J. CircCDK14 ameliorates interleukin-1β-induced chondrocyte damage by the miR-1183/KLF5 pathway in osteoarthritis. Autoimmunity. 2022;55(6):408-417.
DOI: 10.1080/08916934.2022.2081843
Zhu J, Guo Y. Circ_0020093 Overexpression Alleviates Interleukin-1 Beta-induced Inflammation, Apoptosis and Extracellular Matrix Degradation in Human Chondrocytes by Targeting the miR-181a-5p/ERG Pathway. Immunol Invest. 2022;51(6):1660-1677.
DOI: 10.1080/08820139.2021.2021938
Gao L, Wang X, Xiong J, Ma Y. Circular RNA from phosphodiesterase 4D can attenuate chondrocyte apoptosis and matrix degradation under OA milieu induced by IL-1β via circPDE4D/miR-4306/SOX9 Cascade. Immunopharmacol Immunotoxicol. 2022 Oct;44(5):682-692.
DOI: 10.1080/08923973.2022.2077215
Shen L, Ji C, Lin J, Yang H. Regulation of circADAMTS6-miR-324-5p-PIK3R3 ceRNA pathway may be a novel mechanism of IL-1β-induced osteoarthritic chondrocytes. J Bone Miner Metab. 2022 May;40(3):389-401.
DOI: 10.1007/s00774-021-01308-0